
Nitro: A Framework for Adaptive Code Variant Tuning

Saurav Muralidharan, Manu Shantharam, Mary Hall
University of Utah
Salt Lake City, UT

Email: {sauravm, manushan, mhall}@cs.utah.edu

Michael Garland, Bryan Catanzaro
NVIDIA Corporation

Santa Clara, CA
Email: {mgarland, bcatanzaro}@nvidia.com

Abstract—Autotuning systems intelligently navigate a search
space of possible implementations of a computation to find
the implementation(s) that best meets a specific optimization
criteria, usually performance. This paper describes Nitro, a
programmer-directed autotuning framework that facilitates
tuning of code variants, or alternative implementations of
the same computation. Nitro provides a library interface that
permits programmers to express code variants along with meta-
information that aids the system in selecting among the set of
variants at run time. Machine learning is employed to build
a model through training on this meta-information, so that
when a new input is presented, Nitro can consult the model
to select the appropriate variant. In experiments with five
real-world irregular GPU benchmarks from sparse numerical
methods, graph computations and sorting, Nitro-tuned variants
achieve over 93% of the performance of variants selected
through exhaustive search. Further, we describe optimizations
and heuristics in Nitro that substantially reduce training time
and other overheads.

Keywords-Autotuning; Performance Optimization; GPUs;

I. INTRODUCTION

Autotuning systems empirically evaluate a search space
of possible implementations of a computation to identify
the implementation that best meets a specific optimization
criteria, usually performance. A subset of autotuning systems
are programmer-directed, permitting programmers to express
compactly the set of possible implementations and the
system then performs the search in an automated fashion [1],
[2], [3], [4].

A common mechanism in programmer-directed autotun-
ing systems is the code variant, which represents a unique
implementation of a computation, among many, that has the
same interface and is functionally equivalent to the other
variants but may employ fundamentally different algorithms
or implementation strategies. Some programmer-directed au-
totuning systems permit expression of code variants, such as
Sequoia [1] and PetaBricks [2]; earlier work by Brewer [5]
on an auto-calibration toolkit built a model for variant selec-
tion related to input parameters. However, what is missing
from these frameworks is more general meta-information

This research was funded in part by the U.S. Government. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government.

that can be used to select variants, beyond input data set size.
This presents a particular problem for irregular applications,
such as sparse numerical methods and graph algorithms, and
any other applications (e.g., sorting) where characteristics of
the input data set may significantly impact selection of the
best code variant, and is not known until run time.

One approach to selecting among code variants is to
build a statistical Model that maps characteristics of the
input data set to the appropriate variant. In previous work
on the algorithm selection problem [6], statistical learning
techniques are used to select among a set of different algo-
rithms [7], [8], [9]. Frameworks that use statistical learning
techniques include STAPL [10], which uses learning to
dynamically select among algorithms, and OSKI [11], which
uses learning to tune sparse linear algebra computations. To
date, no general-purpose framework enables users to specify
and tune arbitrary code variants, and also customize the
tuning process.

This paper describes a new programmer-directed auto-
tuning system called Nitro. This paper focuses on how
code variants and meta-information for variant selection are
expressed in Nitro, and the underlying system support that
selects the most appropriate variant. Nitro targets two classes
of users: expert programmers who specify the variants and
their meta-information, and end users who invoke Nitro-
enabled software without using any Nitro-specific constructs.
Code variants are created and added to the system with
library calls. In addition to expressing code variants, expert
programmers specify how to calculate features or character-
istics of the input data sets for each variant and representa-
tive training input data sets. The underlying Nitro system
uses supervised learning in an off-line training phase to
infer a model that maps from features of the input data set
to variants. The model is then used by end users to select
optimized code variants for new, unseen inputs. Nitro also
includes a tuning interface to optionally customize the tuning
process, which then invokes optimizations and heuristics
to reduce training time of the model and amortize feature
evaluation costs.

This system described in this paper makes the following
contributions:

• Portable library interface: To make autotuning tech-
nology widely accessible for different platforms, Ni-

tro code variants are represented through library calls
rather than language extensions.

• Expressiveness: Nitro permits programmer expression
of features, their evaluation functions and training in-
puts, which allow programmers to construct general
applications that use autotuning capability.

• Demonstration: We present the results of code variant
selection in Nitro for five distinct computations target-
ing NVIDIA GPUs, an architecture where performance
is particularly sensitive to details of parallel decompo-
sition, data layout and control flow. The computations
are from domains where input data properties signif-
icantly impact variant selection (sparse matrix, graph
and sorting computations). Nitro achieves over 93% of
the performance of variants selected through exhaustive
search.

II. NITRO LIBRARY AND AUTOTUNER

Before describing the Nitro system, we first motivate our
approach with an example, a sparse matrix-vector multiply
(SpMV). In SpMV implementations, the driving principle is
to avoid representing and computing zero-valued elements of
the sparse matrix, thus saving both space and computation.
A common sparse matrix representation is the Coordinate
representation, where for each nonzero element in matrix A,
the corresponding row and column are recorded and used in
the computation in the following way:

for(i = 0; i < nnz; i++)
y[row[i]] += A[i]*x[col[i]];

While general, the representation and associated computa-
tion can be improved if structural properties of the matrix,
such as the distribution of row lengths, are known. In
fact, most SpMV libraries incorporate a variety of matrix
representations and associated code for this reason [11], [12],
[13], [14], [15]. Unfortunately, the structure of the matrix is
usually not known until run time, requiring the programmer
to select the most appropriate variant directly, or some pre-
processing of the input by the system to determine which
version to use.

SpMV libraries usually incorporate multiple formats and
sometimes multiple variants per format. For example, the
CUSP library [15] for NVIDIA GPUs exposes the different
variants and representations as part of the interface, and users
select the appropriate variant to execute.

The way in which CUSP supports the end user in mak-
ing these variant selections (and similar aspects of other
libraries) inspired the approach taken in Nitro. Internally,
CUSP examines properties of the input data set at run time to
determine if a specific matrix representation selected by the
user is likely to be efficient for that input. By encapsulating
these properties along with a few others into features, a
training phase can learn a model to guide the selection of
the variant corresponding to the best matrix representation

and among variants representing different parallelization
strategies for a single representation. At run time, the variant
selection can then be performed automatically.

This automatic support of variant selection in Nitro ben-
efits the expert programmers designing software to be used
by others in a variety of contexts. Such expert programmers
often have an understanding of what variants are appropriate
for a class of target architectures and some intuition about
how the input data set properties affect variant selection.
However, managing the details of collecting properties and
determining cutoff values for variant selection requires ex-
tensive and costly trial-and-error experimentation. Therefore,
it is realistic for expert programmers to provide a collection
of variants and features, which are used as meta-information
for variant selection. This support in Nitro not only increases
the productivity of expert programmers by eliminating the
manual encoding of variant selection, but also improves the
useability of the software for its end users.

In the remainder of this section, we illustrate how the
Nitro system can be used to automate variant selection for
SpMV.

A. Nitro System Overview

Figure 1 provides a high-level overview of the Nitro
system, which consists of two parts: the Nitro Library,
implemented using C++ Templates (Figure 1a), and the
Nitro Autotuner, written in Python (Figure 1b). The Nitro
Library is invoked within an application/library to define a
set of variants, V = {V1, V2, .., Vi}. The programmer also
expresses meta-information for selecting variants: functions
to compute features F = {F1, F2, .., Fj} and optional
constraints for each variant, shown as {C1, C2, .., Ck} in the
figure. Constraints are used to rule out certain variants that
are either inappropriate or incorrect to use for a particular
input.

The Nitro Autotuner is invoked with an external Python
tuning script that allows programmers to specify the Train-
ing Inputs, how to perform feature evaluation, and other
tuning properties for specific variants and the entire appli-
cation/library. This decoupling between the library and the
autotuner ensures that the main application code only con-
tains algorithm-specific details such as variants and features,
and allows programmers convenient experimentation with
different tuning options and porting to different architec-
tures. To communicate with the library, the Python-based
autotuner generates a C++ header file and encapsulates the
tuning properties within tuning policies for each variant.

The Nitro Autotuner builds a statistical Model (Figure 1b)
that maps a set of features represented by a feature vector
[x1, x2, ..., xn] to the label corresponding to the optimal vari-
ant for the corresponding input. By default, Nitro employs
for this purpose Support Vector Machines (SVMs) [16], a
widely-used machine learning algorithm to build the model
from an off-line training phase on the Training Input so that

Nitro Library (C++)

Code	
 Variant	

Variant	
 V1	

Variant	
 V2	

…	

…	

Variant	
 Vi	

F1	
 F2	
 …	
 …	
 Fj	

C1	
 C2	
 …	
 …	
 Ck	

Library	
 Code	

Applica9on	
 Code	

Applica9on	
 Code	

Models	

Query

Models	

Training	
 Inputs	

Nitro	

Autotuner	

(Python)	

Models	

Classifier	

Tuning	
 Script	

Nitro Library (C++)

Code%Variant%

Variant%V1%

Variant%V2%

…%

…%

Variant%Vi%

F1% F2% …% …% Fj%
C1% C2% …% …% Ck%

(a) (b)

Figure 1. Overview of the Nitro system. (a) The production version of the library/application. The C++ library is used to define variants, features, and
constraints. Calling the variant evaluates the input features at run-time and queries the accompanying model to select the right variant to execute for a given
input. (b) The offline autotuning process. User provides a tuning script and training inputs. The autotuner runs the application/library for each training
input and collects training data. The classifier is then consulted with the training data to construct the model(s).

Table I
LIST OF FUNCTIONS PROVIDED BY NITRO FOR VARIANT, FEATURE, AND CONSTRAINT MANAGEMENT

Function Parameters Description

code_variant Constructor Template parameters: tuning_policies object, Tuple
of argument types. Arguments: Pointer to context object Creates code_variant object

add_variant Pointer to Variant Function Object Adds a variant to the code variant object’s internal
variant table

set_default Pointer to Variant Function Object Used to set default variant to execute

add_input_feature Pointer to Feature Function Object Adds the specified function to the list of feature func-
tions

add_constraint
Pointer to Variant Function Object, Pointer to Constraint
Function Object

Adds a constraint function to execute before evaluating
given variant.

fix_inputs() Argument(s) to Variant Fixes inputs to variant. Used for asynchronous feature
evaluation.

operator()(...) Argument(s) to Variant (empty with async feature eval) Executes the correct underlying variant.

it can be consulted at run time given the feature vector of a
new input. We use the publicly available libSVM [17] for
this purpose.

B. Nitro Library Constructs

Table I provides a summary of the constructs available
in Nitro for expressing variants and their associated features
and constraints. Figure 2 provides Nitro code for SpMV,
to illustrate these constructs, as described in the following
paragraphs.

Defining and Adding Code Variants: Nitro represents a
function that has code variants using the code_variant
class. Each variant is expected to be functionally equivalent
and must use the same interface. During instantiation, a tuple
of the function’s argument types, and its tuning policy must
be specified as template arguments. The tuning policy for
each such function is generated by the tuning script in a

separate header file, as discussed in the next section. A
function to be tuned by Nitro can thus be any general-
purpose C++ function. Also during instantiation of the
code_variant class, a pointer to a context object that
maintains global state among all the variants in the program
must be included as a constructor argument. In Figure 2, we
define a function SparseMatVec within the MySparse
library which provides a tuned SpMV implementation using
Nitro. The details of the tuning process are thus abstracted
away from the end user, who can use the MySparse library
without ever needing to know about Nitro.

Each variant must be defined as a C++ function ob-
ject deriving from the variant_type class. An example
variant definition is provided in the bottom of Figure 2.
Variants are added to the code_variant object using the
add_variant function, which accepts a pointer to the

namespace MySparse {
void SparseMatVec(HostMatrix *matrix)
{
 using namespace nitro;
 typedef thrust::tuple<HostMatrix *> ArgTuple;

 // Create Nitro Tuning Context
 context cx;

 // Create code_variant object
 code_variant<tuning_policies::spmv,
 ArgTuple> spmv(cx);

 // Declare and Add Variants
 csr_vector_type<HostMatrix> __csr_vector;
 dia_type<HostMatrix> __dia;
 ...
 spmv.add_variant(&__csr_vector);
 spmv.add_variant(&__dia);
 ...

 // Set Default Variant
 spmv.set_default(&__csr_vector);

 // Declare and Add Features...
 nnz_type<HostMatrix> __nnz;
 num_rows_type<HostMatrix> __num_rows;
 ...
 spmv.add_input_feature(&__nnz);
 spmv.add_input_feature(&__num_rows);
 ...

 // ...and Constraints
 dia_cutoff_type __dia_cutoff;
 spmv.add_constraint(&__dia, &__dia_cutoff);
 ...

 // Variant Call
 spmv(matrix);
}

// Define CSR Vector Variant
template <typename HostMatrix>
struct csr_vector_type :
 nitro::variant_type<HostMatrix *> {
 double operator()(HostMatrix *matrix) {
 ...
 }
};
...
} // end namespace MySparse
!
!
!

Figure 2. Example Nitro Library interface for SpMV.

function object for that variant. All variants of a function
must have the same argument type(s). Users may explicitly
specify a default variant using the set_default function.
Default variants are assumed to work correctly for all inputs
and are used when one or more user-defined constraints fail.
If no default is specified, the system selects the first variant
as the default.

In Figure 2, we add two different variants for SpMV
corresponding to different formats for the sparse matrix:
csr_vector_type for Compressed Sparse Row, and
dia_type for Diagonal [15].

The code for the variant must be specified in the
operator() function, which is used by Nitro to invoke
the desired variant. Nitro variants are required to return a
double precision value, which by default denotes the time
taken by the variant. However, by returning the appropriate
value, Nitro can also be used to predict variants according
to other optimization criteria, for example, energy usage, or
to find the variant that provides the approximate result with
the smallest margin of error.

Defining Input Features: Input features are described
in Nitro through feature functions. These have the same
argument types as the variant, but always return a double,
which represents the value of the calculated feature for an
input. In Nitro, feature functions must be wrapped in a
function object derived from input_feature_type.

The add_input_feature function accepts a pointer
to a feature function object and adds it to the internal
feature function table. All values from the feature functions
automatically get evaluated before the code for the variant
starts executing. For example, in Figure 2, input features
include __nnz, and __num_rows, the number of nonze-
roes, and the number of rows, respectively. To hide the run-
time overhead of feature evaluation, an optimization dis-
cussed in Section III-C is asynchronous feature evaluation;
asynchronous feature evaluation is enabled by calling the
fix_inputs function before calling operator().

Defining Constraints: For certain inputs, it is possible
that a variant produces wrong results, or takes unacceptably
long to execute. Nitro provides support for handling such
cases using user-defined constraints. Constraint functions
can be added to code variants using the add_constraint
function which accepts a constraint function and the specific
variant for which it is valid. Constraints are automatically
evaluated by the library and either force the variant to return
an ∞ value during the offline training phase (thus ensuring
that variant is not selected), or revert back to the default
variant during the online deployment phase. In the example
of Figure 2, the constraint __dia_cutoff ensures that
the __dia variant does not get executed if the constraint
evaluates to false.

C. Nitro Autotuner Interface

The Nitro Autotuner uses an external Python interface
to allow users to precisely control various aspects of the
autotuner and the tuning process for each variant. The
interface exposes the autotuner and code_variant
classes which can be used to configure tuning options
globally, and for each code variant, respectively. Table II
shows the various configuration options available. Most of
these options have a default value, and the only essential

Table II
CONFIGURATION OPTIONS IN THE NITRO AUTOTUNER INTERFACE.

Option Description
classifier Classifier Object to Use (Default: classifier_svm)

parallel_feature_evaluation Enable/Disable Parallel Feature Evaluation
parallel_constraint_evaluation Enable/Disable Parallel Constraint Evaluation

constraints Enable/Disable Constraints
async_feature_eval Enable/Disable Asynchronous Feature Evaluation
feature_selection Enable/Disable Feature Selection

Tuning Algorithm Description
tune Default, trains on entire training input
itune Incremental tuning, optional iter or acc parameters

from nitro.autotuner import *
from nitro.code_variant import *

import glob

Set tuning properties for spmv
spmv = code_variant("spmv", 6)
spmv.classifier = svm_classifier()
spmv.constraints = False
spmv.parallel_feature_evaluation = False
spmv.constraints = True
spmv.async_feature_eval = False

tuner = autotuner("spmv")

Set global tuning properties
matrices = glob.glob("inputs/training/*.mtx")
tuner.set_training_args(matrices)
tuner.set_build_command("make")
tuner.set_clean_command("make clean")

Tune
tuner.tune([spmv])
!

Figure 3. Example Nitro Autotuner interface for SpMV.

information that must be provided is the training input
data set and the functions to be tuned. The remaining
functionality allows the expert user to optionally control the
tuning process as desired.

Figure 3 shows a tuning script for the SpMV example. A
single code_variant object is created (named ‘spmv’)
and both global and variant-specific tuning properties are set.
The call to the tune method starts the autotuning process.

Tuning options specified using this interface are written
out to a header file so that the autotuner can communicate
with the C++ part of the system. Generating a static header
file also enables us to use the C++ template mechanism to
selectively generate relevant code.

III. NITRO AUTOTUNER IMPLEMENTATION

This section elaborates on the functionality of the Nitro
Autotuner. We describe how it builds a model for variant

selection and its optimizations and heuristics to reduce the
overhead of training and feature evaluation.

A. Building a Model for Variant Selection

As mentioned in the previous section, the Nitro Auto-
tuner automatically constructs a model for variant selection
using SVMs, a form of supervised classification. Supervised
classification utilizes a set of labeled training examples to
infer a function that maps new, unseen input instances to
their correct labels. A set of training examples of the form
〈xi, yi〉 is provided, where each xi refers to a feature vector
and yi refers to the corresponding label for xi. In our case,
the label set is integers in the range {0, 1, ...|V |−1}, where
V is the set of variants. During the training phase, for each
training input i with corresponding feature vector xi, the
Nitro Autotuner performs exhaustive search over the code
variants and assigns to label yi the integer designating the
variant that leads to the best performance. The result of
the training phase is a classification model that predicts the
appropriate label for a new, unseen feature vector.

Nitro uses the Radial-Basis Function (RBF) [18] kernel to
perform classification by default. The features are scaled to
the range [−1, 1], and subsequently a cross-validation based
parameter search is performed to find the kernel parameters.

B. Incremental Tuning to Reduce Training Inputs

The execution time of code variants is difficult to predict
in general, and can often be very high for certain inputs.
Coupled with the fact that programmers may provide a large
number of redundant training instances, the training phase
can often become unacceptably time consuming. To reduce
the number of training inputs required for the training phase,
the Nitro Autotuner supports incremental tuning, which
enables Nitro to perform exhaustive search of variants on
only a subset of the training inputs.

A key observation is that the execution time required to
derive feature vectors is typically far lower than the cost of
actually executing variants. Therefore, we compute feature
vectors for all the given inputs, and compute output labels
using exhaustive search (which requires running all variants
for that input) for only a small subset of the inputs and then

select additional inputs to add to the training set to improve
the model.

For this purpose, we employ Active Learning [19], an
iterative learning technique. We provide an initial training
set consisting of i labeled input instances, with at least
one input that has the label of each variant. An additional
j unlabeled input instances (j >> i) provides the active
pool for active learning. Using the feature vectors, Nitro
then iteratively picks new training instances to label using
the Best-vs-Second-Best active learning heuristic for SVMs
proposed in [20]. At each iteration, Nitro updates the model.

When using incremental tuning, Nitro requires a stopping
criteria to determine when the number of training inputs
is sufficient to construct an accurate model. As shown in
Table II, the incremental tuning algorithm is selected by
invoking itune, with either a number of iterations iter or
an accuracy threshold acc. Limiting the number of iterations
is useful when the number of training inputs is too large for
Nitro to evaluate. For problems whose decision boundaries
are of moderate complexity, our experience shows that 20-
25 iterations is usually sufficient to build a good model
(see Section V-B). Alternatively the accuracy threshold with
respect to the test input is useful if the all of the test
inputs have known labels. The tuner then runs automatically,
checking the prediction performance at each step on the
test set, and then converges when the model reaches this
accuracy. For the benchmarks in this paper, we were able to
achieve considerable reductions in training times using this
strategy for incremental tuning (see Section V-B).

C. Optimizing Feature and Constraint Evaluation

As additional optimizations, Nitro can also (1) parallelize
feature and constraint evaluation; and, (2) start executing
feature functions asynchronously. The latter mode returns
control to the main thread immediately and thus allows
the overlap of other computation with feature evaluation so
that some of the feature evaluation time may be amortized.
Calling the variant while in asynchronous mode introduces
an implicit barrier, ensuring the correct evaluation of all
features before variant execution. These two modes are
currently implemented in Nitro using the Intel TBB [21]
library.

IV. BENCHMARKS

Figure 4 lists the benchmarks we use to evaluate Nitro’s
effectiveness, including a description of the set of variants,
the features used, and number of inputs for training and
test data sets. All of these benchmarks are derived from
high-performance CUDA libraries that already included code
variants. Further, for each benchmark, the best-performing
code variant varies according to properties of the input data.
By using existing high-performance libraries, we are able
to focus the experiment on the small amount of additional
code required to integrate Nitro and deriving the features

to be used in variant selection. The training and test inputs
come from standard sources, as described, and the training
inputs are not included in the test inputs. Further, we choose
training inputs such that all variants are well-represented in
the training set for each benchmark.

Sparse Matrix-Vector Multiplication (SpMV). As de-
scribed in Section II, SpMV is a critical operation that is
used in many iterative methods for solving large-scale linear
systems. For this experiment, we use the CUSP library [22]
to provide the code variants for SpMV. We use 3 features
related to the matrix row lengths (average non-zeros per row,
standard deviation of the row lengths, and deviation of the
longest row from the average row length), and 2 features
that estimate the padding required for the DIA and ELL
formats (DIA and ELL fill-in). A training set consisting of
54 matrices from the UFL Sparse Matrix collection [23] was
used. For the 100 matrices in the test set, we selected 10
matrices each from a set of 9 groups in the UFL collection
at random (with the exception of the Williams group, which
has only 7 matrices in the UFL collection), and generated
13 matrices related to stencils.

Linear Solvers and Preconditioners. Many large-scale
scientific simulations such as computational fluid dynamics
(CFD) and structural mechanics [24] involve solving partial
differential equations (PDE) systems. Typically, solution
to a PDE-based system involves solving the underlying
sparse linear system using software toolkits [25], [26]. One
of the challenges in effectively using such toolkits is the
selection of an appropriate 〈 linear solver, preconditioner 〉
combination as this selection impacts both the performance
and convergence of the computation. For this experiment,
we use 6 (linear solver, preconditioner) combinations from
the CULA Sparse toolkit [26], which is a GPU library
for solving large sparse linear systems. We select features
for this benchmark based on the work by Bhowmick et
al. [27]. These features reflect different numerical properties
of sparse matrices such as trace and 1-norm.

We use symmetric sparse matrices from the UFL Sparse
Matrix collection to represent sparse linear systems. We
use 26 and 100 matrices in the training and testing set,
respectively.

Breadth-First Search (BFS). BFS is used as a basis for
algorithms that analyze sparse relationships (such as social
networks and electronic design automation) represented as
graphs. Using Nitro, we select variants from a set of highly
optimized BFS implementations for GPUs [28], part of
a larger set of GPU primitives provided in the Back40
Library [29]. We consider a set of six variants provided in
the library, which are designed for different types of input
graphs. The library includes a seventh variant, named Hybrid
that tries to dynamically combine the strengths of the CE-
Fused and 2-Phase Fused kernels. Matching the performance
of the Hybrid variant was one of our goals. We use a set
of 5 graph features: number of vertices and edges, average

Benchmark Variants Description Features (#Training7i/ps,
#Testing7i/ps)

CSR$Vec Performs.SpMV.on.CSR$formatted.matrices..Assigns.a.warp.to.each.row.
DIA,.ELL Perform.SpMV.on.DIA.and.ELL.formatted.matrices.
CSR$Tx,.DIA$Tx,.ELL$Tx Same.as.above.variants,.but.input.vector.cached.in.texture.memory.
CG$Jacobi,.CG$Bjacobi,.CG$
Fainv

Conjugate.gradients.method.with.Jacobi,.Blocked.Jacobi.and.Factorized.
Approximate.Inverse.preconditioners.

BiCGStab$Jacobi.,BiCGStab$
Bjacobi,.BiCGStab$Fainv

BiConjugate.gradients.Stabilized.method.with.Jacobi,.Blocked.Jacobi.and.
Factorized.Approximate.Inverse.preconditioners.

EC$Fused,.EC$Iter
Expand.incoming.vertex.frontier,.filter,.and.produce.outgoing.vertex.
frontier..Fused.version.invokes.single.kernel.that.steps.through.BFS.
iterations..Iterative.version.invokes.a.separate.kernel.for.each.BFS.iteration.

CE$Fused,.CE$Iter Contract.incoming.edge.frontier,.filter,.and.produce.outgoing.edge.frontier.

2$Phase$Fused,.2$Phase$Iter Isolates.vertex.expansion.and.edge.contraction.workloads.into.separate.
kernels.

Sort$ES,.Sort$Dynamic
Sort.data.first,.and.then.do.a.quick.run$length.detection..Even$Share.(ES).
version.assigns.an.even.share.of.inputs.to.thread.blocks,.dynamic.uses.a.
queue.

Global$Atomic$ES
Global$Atomic$Dynamic Compute.Histogram.using.global.atomic.add.operations..

Shared$Atomic$ES
Shared$Atomic$Dynamic

Compute.Block$level.Histogram.using.shared.memory.atomicAdd,.and.then.
reduce.to.final.Histogram.

Merge.Sort Merge.sort.from.ModernGPU.library.

Locality.Sort Locality.sort.from.ModernGPU.library.

Radix.Sort Radix.sort.from.CUB.

(54,.100)

(26,.100)

(20,.148)

(120,.600)N,.Nbits,.NAscSeq

N,.N/#Bins,.SubSampleSD (200,.1291)

AvgNZPerRow,.RL$SD,.
MaxDeviation,.DIA$Fillin,.ELL$
Fillin

AvgOutDeg,.Deg$SD,.
MaxDeviation,.Nvertices,.
Nedges

NNZ,.Nrows,.Trace,.DiagAvg,.
DiagVar,.DiagDominance,.
LBw,.Norm1

SpMV

Solvers

Sort

BFS

Histogram

Figure 4. A brief description of variants and list of features used for each benchmark. The last column lists the sizes of training and testing sets.

out-degree, standard deviation of the degree of each node,
and deviation of the node with the highest out-degree from
the average out-degree. The training set for BFS consists
of a set of 20 graphs. We then test the performance of
the Nitro-tuned version on 148 graphs in the DIMACS10
group in the UFL Sparse Matrix collection. We run 100
randomly-sourced BFS traversals for each graph to evaluate
each variant. Further, we use the traversed edges per second
(TEPS) as the optimization metric.

Histogram. A Histogram operation counts the number
of observations that fall into one of a set of disjoint cat-
egories or ‘bins’. Histograms are very commonly used as
building blocks in more complex algorithms in a number of
domains, especially image processing. We use the variants
implemented in the CUDA Unbound (CUB) [30] library for
this benchmark.

We evaluate three variants and two grid-mapping strate-
gies thus giving rise to six code variants. We use 3 features:
length of the input sequence, average number of elements
per bin, and the standard deviation of a sub-sequence of the
input sequence (SubSampleSD in Figure 4). We construct a
256-bin histogram for grayscale images, with pixel values
ranging from 0 to 255. For training and testing, we use the
images from the INRIA Holidays Dataset [31] (converted to
grayscale). Out of the 1491 images in the dataset, 200 are
used for training and the rest for testing.

Sort. Sorting is used as a building block in a myriad
of algorithms and methods. We use 3 high-performance
GPU sorting algorithms: Merge Sort, Locality-Optimized
Segmented Sort, and Radix Sort as variants for this bench-

mark. The Merge and Locality Sorts are part of the Mod-
ernGPU [32] library of GPU primitives, while the Radix Sort
implementation is provided in CUB [30]. We use a set of 3
features: length of the input sequence, number of bits in the
input data type, and the number of ascending sub-sequences
of the input.

Sorting is performed on 32 and 64-bit floating point keys.
We train a combined model for both data types and report
performance numbers achieved on a test set consisting of
both types of data. The training set consists of 60 sequences
for each data type, thus giving us a total of 120 instances.
For testing, we use a total of 600 sequences, 300 for each
data type. Further, each of the 300 instances is divided into
3 categories, 100 consisting of uniformly random keys, 100
consisting of reverse sorted keys, and 100 consisting of
almost sorted keys. We also tried replacing the uniformly
random keys with keys drawn randomly from the Standard
Normal and Standard Exponential distributions, but the
performance was identical. The “almost-sorted” category
is generated by taking a sorted sequence and randomly
swapping 20-25% of the keys. Key lengths are varied from
100K to 20M keys.

V. RESULTS

We run these benchmarks on a system with an Intel Core
i7 930 processor with 4 GB of RAM. The graphics card
used is an NVIDIA Tesla C2050 (Fermi).

To evaluate the effectiveness of Nitro, we first compare
the average performance of variants selected using Nitro
with the best variants selected using exhaustive search. In all

0	

20	

40	

60	

80	

100	

Ni
tro

	

CS
R-­‐
Ve

c	

DI
A	

EL
L	

CS
R-­‐
Tx
	

DI
A-­‐
Tx
	

EL
L-­‐
Tx
	

Ni
tro

	

CG

-­‐Ja
co
bi
	

CG
-­‐B
ja
co
bi
	

CG
-­‐F
ai
nv
	

Bi
CG

St
ab
-­‐Ja

co
bi
	

Bi
CG

St
ab
-­‐B
ja
co
bi
	

Bi
CG

St
ab
-­‐F
ai
nv
	

Ni
tro

	

EC

-­‐F
us
ed

	

EC

-­‐It
er
	

CE
-­‐F
us
ed

	

CE

-­‐It
er
	

2-­‐
Ph

as
e-­‐
Fu
se
d	

2-­‐
Ph

as
e-­‐
Ite

r	

Ni
tro

	

So
rt-­‐
ES
	

So
rt-­‐
Dy

na
m
ic	

Gl
ob

al
-­‐A
to
m
ic-­‐
ES
	

Gl
ob

al
-­‐A
to
m
ic-­‐
Dy

na
m
ic	

Sh
ar
ed

-­‐A
to
m
ic-­‐
ES
	

Sh
ar
ed

-­‐A
to
m
ic-­‐
Dy

na
m
ic	

Ni
tro

	

M
er
ge
	
 So

rt	

Lo
ca
ilt
y	
 S

or
t	

Ra
di
x	
 S

or
t	

SpMV	
 Solvers	
 BFS	
 Histogram	
 Sort	

%
	
 P
er
fo
rm

an
ce
	
 w
.r.
t	
 B

es
t	

Average	
 Performance	
 VariaTon	
 of	
 Variants	

Figure 5. Performance Variation Among Variants

benchmarks, the test set we use to compare performance is
much larger than the training set used to train the classifier.
We do this to evaluate whether the model generalizes well
to new inputs. We also evaluate the performance of the
training time reduction heuristic and provide an analysis of
the performance variation with respect to features.

A. Variant Selection

Figure 5 shows the performance of individual variants
with respect to the performance achieved by the best variants
(shown as 100% in the figure), on average, for each of the 5
benchmarks with their respective test sets. Also included in
the figure is a comparison with the performance achieved by
variants tuned by Nitro. In all benchmarks, the Nitro-tuned
variants achieve within 7% of the performance achieved by
the best variants.

Sparse Matrix-Vector Multiplication. The first bar in
Figure 6 shows the tuning results for SpMV. On aver-
age, SpMV selected through Nitro achieved a performance
93.74% compared to the variants selected through exhaustive
search. Further, we notice that over 90% of the input matri-
ces achieve 70% or more of the performance of exhaustive
search, and close to 80% of the input matrices achieve 90%
or more performance.

We notice a few data points lying below the 70% mark as
well. Poor performance on these matrices is mainly due to
the significant performance penalty of mispredicting. In most
cases, this is because DIA was chosen incorrectly, or because
Texture-Cached was not chosen when it should have been.

This may be improved with additional or more representative
features: we currently do not have a feature designed to
capture when the Texture-Cached variant should be selected.

Linear Solvers and Preconditioners. For the second
benchmark in Figure 6, on average the variants selected us-
ing Nitro perform at 93.23% of the best performing variants.
This average number is for 94 matrices as no variant was
able to solve linear systems represented by 6 matrices, i.e.,
the variants did not converge to a solution. Additionally, the
results indicate that of the 94 test matrices, there were 35
for which at least one variant did not converge. The Nitro
version successfully selected a converging variant 33 out of
the 35 times. We can thus make the following observation:
Nitro not only predicts a high-performance variant, but also
selects a converging one with high accuracy.

Breadth-First Search. For the third benchmark in Fig-
ure 6, the average performance of the variant selected by
Nitro with respect to variants selected by exhaustive search
is 97.92%.

We observed that one of CE-Fused or 2-Phase-Fused was
almost always selected for all the graphs we tested on.
Further, 2-Phase-Fused seemed to perform relatively well
for most graphs with high average out-degrees, but poorly
compared to the CE-Fused kernel for graphs with relatively
low average out-degrees. Both these observations correspond
with the results observed in Merrill et al. [28]. Due to the
relatively simple decision boundary between variants in this
experiment, Nitro selected variants were able to achieve very
high performance using just 20 training data instances.

0	

0.2	

0.4	

0.6	

0.8	

1	

Sp
MV
	

So
lve
rs	
 BF

S	

His
tog
ram

	

So
rt	

Fr
ac
<o

n	

of
	
 T
es
t	
 S

et
	

Performance	

<	
 70%	

70%	
 -­‐	
 80%	

80%	
 -­‐	
 90%	

90%	
 –	
 100%	

100%	

Figure 6. Performance comparison across all test inputs.

The Hybrid variant proposed in Merrill et al. [28] tries
to dynamically combine the strengths of the CE-Fused and
2-Phase-Fused kernels. The Nitro-tuned version was able
to beat the performance of the Hybrid version by 11%
on average. Even though the Hybrid kernel performs well
uniformly across different inputs, we noticed that it was
almost always slightly slower than the best variant for a
given input (average performance was 88.14% of the best
variant). This is possibly due to the dynamic nature of the
Hybrid kernel.

Histogram. For the fourth benchmark in Figure 6 the
average performance achieved by the variants tuned with
Nitro with respect to the best variants is 94.16%. We
observe that the tuned variant performs reasonably well
across different input distributions. The global and shared
atomic variants, however, perform well only when the data
is uniformly distributed. For non-uniformly distributed data,
the high latency of atomic-add operations on GPUs coupled
with the high number of concurrent threads trying to update
a small number of bins causes the global and shared atomic
variants (especially the global atomic variant) to experience
a performance drop.

Sort. The last bar in Figure 6 shows the tuning results
for the Sort benchmark. The Nitro-tuned variants achieve
an average performance of 99.25% with respect to the best
variants.

We observed from our experiments that while Radix
Sort performs exceedingly well for the 32-bit keys, its
performance is surpassed by Merge and Locality Sorts in
the 64-bit case. In particular, for almost sorted sequences,
Locality Sort performs best. From Figure 5, it is also clear
that on average, the Nitro-selected variant performs better
than all the other variants, irrespective of data type.

B. Training Time Reduction

As described in Section III, Nitro supports the option
of incremental tuning when there is possibly redundant
training data and/or the variants take a long time to execute.

50	

60	

70	

80	

90	

100	

1	
 11	
 21	
 31	
 41	
 51	
 Av
er
ag
e	

%
	
 P
er
fo
rm

an
ce
	
 w
.r.
t	
 B

es
t	

Number	
 of	
 Training	
 Instances	

Incremental	
 Tuning	
 Performance	

SpMV	

Solvers	

BFS	

Histogram	

Sort	

Figure 7. Convergence for active learning training heuristic.

70	

75	

80	

85	

90	

95	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

%
	
 P
er
fo
rm

an
ce
	
 w
.r.
t	
 B

es
t	

Number	
 of	
 Features	

Performance	
 w.r.t	
 Feature	
 EvaluaBon	

Overhead	

SpMV	

Solvers	

BFS	

Histogram	

Sort	

Figure 8. Performance variation as features with higher evaluation
overhead are added incrementally.

Figure 7 shows that the number of iterations required by
incremental tuning to reach within 90% of the performance
achieved without incremental tuning is roughly 25 iterations.
To match the performance achieved by using the full training
set, incremental tuning takes no more than 50 iterations,
and can be achieved in less than 20 iterations for all
but the SpMV benchmark. Another observation from the
figure is that sometimes additional training data leads to a
decrease in performance, and more iterations are needed for
convergence. Even with carefully chosen training data, the
incremental tuning algorithm uses only a fraction of this
data to achieve comparable performance to tuning on the
full training set.

C. Feature Evaluation Overhead

Figure 8 shows the variation in performance as features
with higher evaluation overhead are added incrementally.
We notice that in case of the Sort and Solver benchmarks,
removing the feature with the highest evaluation overhead
(Presortedness and Left Bandwidth, respectively) has little

effect on final performance. In the case of BFS, we notice
that performance depends almost entirely on the Average
Out-Degree (shown as Feature 1 in the graph).

Using this pruned feature set thus results in almost neg-
ligible feature evaluation overhead for the BFS and Sort
benchmarks (since we are only left with O(1) features).
In Histogram, the most expensive feature (Feature 3 in the
graph) computes the standard deviation of a sub-sample of
the input. The default size for this is 25% of the size of
the input sample, or 10,000 elements, whichever is lower.
From our experiments, we noticed that evaluation overhead
for this feature can be brought down to less than 0.1% of the
time taken by the variant on average by simply decreasing
the size of the sub-sample, at the cost of slightly decreased
overall performance.

In the remaining benchmarks (SpMV and Solvers), it is
evident that getting peak performance requires evaluating
the more expensive features. However, this cost is amortized
for SpMV as we compute the feature vector only once and
execute the SpMV operation multiple times. For Solvers,
feature vector computation takes place only once, and is
amortized over hundreds or thousands of solver iterations.

VI. RELATED WORK

Several programmer-directed autotuning frameworks sup-
port tuning of code/algorithmic variants. Petabricks [2] sup-
ports user specification of transforms that are analogous to
functions. Transforms are automatically composed together
to form hybrid algorithms using a compiler framework and
an adaptive algorithm [33]. Petabricks, however, implic-
itly tunes variants for the size of the input data set. Our
framework, on the other hand, can tune based on any user-
defined characteristic of the input data. Brewer [5] describes
a code variant selection system that uses linear regression to
predict the performance of individual variants based on input
parameters. The variant with the lowest predicted run time is
then selected. Sequoia selects variants with user guidance for
recursive algorithms that target the memory hierarchy [1].

Apart from code variants, a number of systems support
the expression and tuning of optimization parameters. Such
systems can be adapted for code variant generation and
tuning using parameterized templates which specify how
to generate new variants based on the actual values of the
parameters in the template (found through search). Examples
of such systems include Active Harmony [4] (integrated with
the CHiLL loop transformation framework [34] to generate
variants), POET [35], and Orio [36]. Since parameter tuning
cannot capture the algorithm variants used in our study, this
work is complementary to our approach.

In addition to general-purpose frameworks, various au-
totuning systems and techniques have been built to aid
in the development of efficient and portable applications
for specific domains. Examples of such systems include

ATLAS [37], PhiPAC [38], and OSKI [11] for linear al-
gebra, [39], FFTW [40] and SPIRAL [41] for signal pro-
cessing, [42], [43], [44] for stencil computations, and [45]
for sorting.

The general problem of algorithm selection was first for-
mally stated and studied by Rice in 1976 [6]. Vuduc [7] pro-
vides an evaluation of statistical learning techniques in the
context of algorithm selection. Lagoudakis and Littman [8]
model the algorithm selection problem as a Markov De-
cision Process and use Reinforcement Learning techniques
to solve it. Guo proposes the use of Bayesian Networks
to learn the mapping from input features to code vari-
ants [9]. Petabricks uses a bottom-up evolutionary algorithm
named INCREA [33] which builds a tuned algorithm for
a specific problem size by incrementally composing tuned
algorithms for smaller problem sizes. Other work in this
area includes [46], [47], [48], [49]. Luo et al [50] propose
a system for code variant selection based on input sizes and
compare the prediction performance of various classifiers.
Many of these techniques can be integrated into Nitro’s
learning sub-system, thus replacing/augmenting the SVM-
based technique currently employed.

VII. CONCLUSIONS

This paper has presented Nitro, which is a programmer-
directed autotuning framework that employs supervised
learning to select code variants based on features of their
input data set. The support in Nitro for deriving classi-
fication models of input data sets is particularly impor-
tant for irregular applications, where the best version of
a computation is heavily affected by the structure of the
input. On five high-performance GPU applications, variants
tuned using Nitro achieve over 93% of the performance of
variants selected through exhaustive search, averaged over
the testing inputs. Further, we demonstrate an incremental
tuning mode for Nitro that achieves substantial reduction in
the training set size. With the initial framework in place,
we envision a number of directions to expand on Nitro’s
capability. The features we use in this paper are expressed
by an expert programmer, but the framework could easily
support additional features that are added implicitly by the
system, such as architectural features, or features derived
from compiler analysis. We also plan to incorporate into
Nitro optimization parameters common to most autotuning
systems, and integrate it with compiler-based autotuning.
Our long-term goal is a mainstream autotuning framework
that supports both expert users and the general programming
community.

ACKNOWLEDGEMENTS

We would like to thank NVIDIA Corporation for generous
equipment donations, and members of the NVIDIA research
group including Duane Merrill and Sean Baxter for discus-
sions on tuning the BFS, Histogram, and Sort benchmarks.

This research was funded by DARPA contract HR0011-13-
3-0001.

REFERENCES

[1] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston,
J. Y. Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and
P. Hanrahan, “Sequoia: programming the memory hierarchy,”
in Proceedings of the 2006 ACM/IEEE conference on Super-
computing, ser. SC ’06, 2006.

[2] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe, “Petabricks: a language
and compiler for algorithmic choice,” in Proceedings of the
2009 ACM SIGPLAN conference on Programming language
design and implementation, ser. PLDI ’09, 2009, pp. 38–49.

[3] C. Tapus, I.-H. Chung, and J. Hollingsworth, “Active har-
mony: Towards automated performance tuning,” Supercom-
puting, ACM/IEEE 2002 Conference, pp. 44–44, Nov. 2002.

[4] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth,
“A scalable auto-tuning framework for compiler optimiza-
tion,” in Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, May 2009, pp. 1–12.

[5] E. A. Brewer, “High-level optimization via automated statis-
tical modeling,” in Proceedings of the fifth ACM SIGPLAN
symposium on Principles and practice of parallel program-
ming, ser. PPOPP ’95, 1995, pp. 80–91.

[6] J. R. Rice, “The algorithm selection problem,” Advances in
Computers, vol. 15, pp. 65–118, 1976.

[7] R. Vuduc, J. W. Demmel, and J. A. Bilmes, “Statistical
models for empirical search-based performance tuning,” Int.
J. High Perform. Comput. Appl., vol. 18, no. 1, pp. 65–94,
Feb. 2004.

[8] M. G. Lagoudakis and M. L. Littman, “Algorithm selection
using reinforcement learning,” in Proceedings of the Seven-
teenth International Conference on Machine Learning, ser.
ICML ’00. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000, pp. 511–518.

[9] H. Guo, “A bayesian approach for automatic algorithm se-
lection,” in Proceedings of the IJCAI Workshop on AI and
Autonomic Computing: Developing a Research Agenda for
Self-Managing Computer Systems, 2003.

[10] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M.
Amato, and L. Rauchwerger, “A framework for adaptive
algorithm selection in STAPL,” in Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of
parallel programming, ser. PPoPP ’05, 2005, pp. 277–288.

[11] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library
of automatically tuned sparse matrix kernels,” Journal of
Physics: Conference Series, vol. 16, no. 1, pp. 521–530, 2005.

[12] D. Guo and W. Gropp, “Optimizing Sparse Data Structures
for Matrix-Vector Multiply,” International Journal of High
Performance Computing Applications, vol. 25, pp. 115–131,
2011.

[13] R. Vuduc and H. Moon, “Fast Sparse Matrix-Vector Multipli-
cation by Exploiting Variable Block Structure,” in Proceed-
ings of the High Performance Computing and Communica-
tions, volume 3726 of LNCS. Springer, 2005, pp. 807–816.

[14] E. Im, K. A. Yelick, and R. Vuduc, “Sparsity: Optimization
Framework for Sparse Matrix Kernels,” Int. J. High Perform.
Comput. Appl., vol. 18, no. 1, pp. 135–158, 2004.

[15] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in SC ’09:
Proc. Conference on High Performance Computing Network-
ing, Storage and Analysis, Nov. 2009.

[16] V. N. Vapnik, Statistical learning theory. Wiley, New York,
1998.

[17] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, pp. 27:1–27:27, 2011.

[18] M. D. Buhmann, Radial Basis Functions. New York, NY,
USA: Cambridge University Press, 2003.

[19] B. Settles, “Active learning literature survey,” University of
Wisconsin–Madison, Computer Sciences Technical Report
1648, 2009. [Online]. Available: http://axon.cs.byu.edu/ mar-
tinez/classes/778/Papers/settles.activelearning.pdf

[20] A. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-class
active learning for image classification,” in Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, june 2009, pp. 2372 –2379.

[21] J. Reinders, Intel Threading Building Blocks: Outfitting C++
for Multi-Core Processor Parallelism. O’Reilly, 2007.

[22] N. Bell and M. Garland, “Generic parallel algorithms for
sparse matrix and graph computations,” 2009. [Online].
Available: http://code.google.com/p/cusp-library/

[23] T. Davis, “The University of Florida Sparse Matrix Collec-
tion,” ACM Transactions on Mathematical Software, vol. 38,
pp. 1:1–1:25, 2011.

[24] M. A. Heroux, P. Raghavan, and H. D. Simon, Parallel
Processing for Scientific Computing (Software, Environments
and Tools). Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2006.

[25] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Effi-
cient management of parallelism in object oriented numerical
software libraries,” in Modern Software Tools in Scientific
Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen,
Eds. Birkhäuser Press, 1997, pp. 163–202.

[26] E. Photonics and Nvidia, “CULA | sparse,”
http://www.culatools.com/.

[27] S. Bhowmick, B. Toth, and P. Raghavan, “Towards low-
cost, high-accuracy classifiers for linear solver selection,” in
Proceedings of the 9th International Conference on Compu-
tational Science: Part I, ser. ICCS ’09, 2009, pp. 463–472.

[28] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU
graph traversal,” in Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Program-
ming, ser. PPoPP ’12, 2012, pp. 117–128.

[29] D. Merrill and et al., “Back40 computing,” 2012. [Online].
Available: http://code.google.com/p/back40computing/

[30] D. Merrill, “Cuda unbound (cub),”
http://nvlabs.github.io/cub/.

[31] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding
and weak geometric consistency for large scale image search,”
in European Conference on Computer Vision, ser. LNCS,
A. Z. David Forsyth, Philip Torr, Ed., vol. I. Springer, oct
2008, pp. 304–317.

[32] S. Baxter, “Modern GPU,”
http://nvlabs.github.io/moderngpu/.

[33] J. Ansel, M. Pacula, S. Amarasinghe, and U.-M. O’Reilly,
“An efficient evolutionary algorithm for solving bottom up
problems,” in Annual Conference on Genetic and Evolution-
ary Computation, Dublin, Ireland, July 2011.

[34] C. Chen, “Model-guided empirical optimization for memory
hierarchy,” Ph.D. dissertation, University of Southern Califor-
nia, May 2007.

[35] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan, “Poet:
Parameterized optimizations for empirical tuning,” in Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, 2007, pp. 1–8.

[36] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-
based empirical performance tuning using Orio,” in IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), Rome, Italy, 2009.

[37] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Op-
timizing matrix multiply using PHiPAC: A portable, high-
performance, ANSI C coding methodology,” in International
Conference on Supercomputing, 1997, pp. 340–347.

[38] R. Whaley and D. Whalley, “Timing high performance ker-
nels through empirical compilation,” in International Confer-
ence on Parallel Processing, 2005, pp. 89–98.

[39] F. de Mesmay, Y. Voronenko, and M. Puschel, “Offline library
adaptation using automatically generated heuristics,” in Paral-
lel Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, April 2010, pp. 1–10.

[40] M. Frigo and S. G. Johnson, “The fastest Fourier transform
in the West,” MIT Lab for Computer Science, Tech. Rep.
MIT-LCS-TR728, 1997.

[41] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code
generation for DSP transforms,” Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and
Adaptation”, vol. 93, no. 2, pp. 232– 275, 2005.

[42] M. Christen, O. Schenk, and H. Burkhart, “Patus: A code
generation and autotuning framework for parallel iterative
stencil computations on modern microarchitectures,” in Par-
allel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, May 2011, pp. 676–687.

[43] K. Datta, M. Murphy, V. Volkov, S. Williams,
J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick, “Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures,” in
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, ser. SC ’08. Piscataway, NJ, USA:
IEEE Press, 2008, pp. 4:1–4:12. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1413370.1413375
[44] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “An

auto-tuning framework for parallel multicore stencil compu-
tations,” in International Parallel and Distributed Processing
Symposium, 2010.

[45] X. Li, M. Garzaran, and D. Padua, “Optimizing sorting with
genetic algorithms,” in Code Generation and Optimization,
2005. CGO 2005. International Symposium on, March 2005,
pp. 99–110.

[46] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden,
and Y. Shoham, “A portfolio approach to algorithm select,”
in Proceedings of the 18th International Joint Conference on
Artificial Intelligence, ser. IJCAI’03. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2003, pp. 1542–
1543.

[47] L. Kotthoff, I. P. Gent, and I. Miguel, “A preliminary eval-
uation of machine learning in algorithm selection for search
problems,” in Fourth Annual Symposium on Combinatorial
Search, 2011.

[48] L. Lobjois and M. Lemaı̂tre, “Branch and bound algorithm
selection by performance prediction,” in Proceedings of
the Fifteenth National/Tenth Conference on Artificial Intel-
ligence/Innovative Applications of Artificial Intelligence, ser.
AAAI ’98/IAAI ’98. Menlo Park, CA, USA: American
Association for Artificial Intelligence, 1998, pp. 353–358.

[49] A. Guerri and M. Milano, “Learning techniques for automatic
algorithm portfolio selection,” in Proceedings of the 16th Eu-

reopean Conference on Artificial Intelligence, (ECAI 2004).
IOS Press, 2004, pp. 475–479.

[50] L. Luo, Y. Chen, C. Wu, S. Long, and G. Fursin, “Finding
representative sets of optimizations for adaptive multiver-
sioning applications,” in In 3rd Workshop on Statistical and
Machine Learning Approaches Applied to Architectures and
Compilation (SMART09), colocated with HiPEAC09 confer-
ence, 2009.

