
A Collection-Oriented Programming
Model for Performance Portability

Saurav Muralidharan
University of Utah

Salt Lake City, UT, USA
sauravm@cs.utah.edu

Michael Garland
NVIDIA Corporation
Santa Clara, CA, USA
mgarland@nvidia.com

Bryan Catanzaro
Baidu Inc.

Sunnyvale, CA, USA
bcatanzaro@acm.org

Albert Sidelnik
NVIDIA Corporation
Santa Clara, CA, USA
asidelnik@nvidia.com

Mary Hall
University of Utah

Salt Lake City, UT, USA
mhall@cs.utah.edu

Abstract
This paper describes Surge, a collection-oriented programming
model that enables programmers to compose parallel computa-
tions using nested high-level data collections and operators. Surge
exposes a code generation interface, decoupled from the core com-
putation, that enables programmers and autotuners to easily gen-
erate multiple implementations of the same computation on var-
ious parallel architectures such as multi-core CPUs and GPUs.
By decoupling computations from architecture-specific implemen-
tation, programmers can target multiple architectures more eas-
ily, and generate a search space that facilitates optimization and
customization for specific architectures. We express in Surge four
real-world benchmarks from domains such as sparse linear-algebra
and machine learning and from the same performance-portable
specification, generate OpenMP and CUDA C++ implementations.
Surge generates efficient, scalable code which achieves up to 1.32x
speedup over handcrafted, well-optimized CUDA code.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.4 [Processors]: Code gen-
eration; D.3.2 [Language Classifications]: Concurrent, distributed
and parallel languages

Keywords Nested-data-parallelism, performance-portability

1. Introduction
The recent proliferation of platforms that combine latency-opti-
mized general-purpose multicore parallel architectures with thr-
oughput-optimized accelerators such as GPUs may employ differ-
ent parallel programming models (e.g., OpenMP and CUDA) on
the same machine. Proposed extensions to OpenMP may reduce
this programming burden through a common programming model,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

but nevertheless code developed for one architectural paradigm is
difficult to port to a completely different paradigm. Expert pro-
grammers, who are familiar with lower-level details of the target
architecture, commonly produce software customized to its spe-
cific features. The resulting low-level code is difficult to maintain
and likely not portable to future architectures. In contrast, domain
experts, who may not be well-versed with the details of the target
architecture, are often looking for high-level abstractions for paral-
lelism that also help them obtain good performance on current and
future parallel architectures. To satisfy both groups, parallel pro-
gramming models that provide both (1) high-level abstractions, and
(2) performance portability, i.e., enable construction of programs
that perform well across a variety of current and future parallel
architectures, are thus critically important. This paper describes a
new collection-oriented parallel programming model called Surge.
Surge supports nested data-parallel collections and operations as in
models such as NESL [2], but decouples the specification of com-
putations from architecture-specific implementation details using
schedules. A schedule specifies how a computation is mapped onto
the target hardware platform. This decoupling is one of the unique
features of Surge and it allows expert programmers to (1) target
multiple architectures more easily, and (2) generate a search space
of possible implementations, from among which optimal ones can
be found either manually or using techniques such as autotuning.
Additionally, a schedule inference mechanism helps find good im-
plementations automatically to enable non-expert programmers to
use the system to write performance-portable programs.

2. Programming Model Overview
Surge exposes a number of collections and data-parallel primitives
(also called operators) which can be nested within each other to
express individual computations. Consider the sparse matrix-vector
multiply (SpMV) example from Listing 1. This example uses high-
level collections and operators to express the core computation in
about six lines of code (excluding comments). From this concise
specification, Surge is capable of generating multiple CPU and
GPU implementations, with some of the GPU implementations
outperforming the hand-tuned CUSP library [1].

2.1 Operators and Collections
Collection-oriented programming models provide primitives that
operate on collections of data. Surge provides a number of high-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA
ACM 978-1-4503-3205-7/15/02
http://dx.doi.org/10.1145/2688500.2688537

263

1 auto inner_product =
2 [=](S row, I indices) {
3 // Gather elements from vector x
4 auto z = gather(x, indices);
5
6 // Perform element-wise
7 // multiplication of x with row
8 auto vector_mul = map(mul, row, z);
9

10 // Obtain inner product by
11 // summing up elements of vector_mul
12 return reduce(plus, vector_mul);
13 }
14 // Apply inner product over all rows of matrix
15 y = map(inner_product, s_matrix, s_indices);

Listing 1: Surge code for SpMV

level operators inspired by existing data-parallel programming
models such as NESL and Copperhead [3], and provides collec-
tions using a sequence type, which represents a view over the
underlying data. A sequence of length n is a collection indexed by
contiguous integers [0, n), and is defined in our current implemen-
tation using a pair of iterators pointing to the start and end of the
underlying data. Surge also supports multi-dimensional arrays that
are analogous to sequences, but present a multi-dimensional view
over the underlying (flat) data instead of a one-dimensional view.
Examples of some core data-parallel operators in Surge are: map,
reduce, scan etc. In addition to these, Surge also provides a set of
sequence operators that create and transform sequences. Examples
of sequence operators include transform, range, split etc.

In the SpMV example, x and y are flat sequences, and s_matrix
and s_indices are nested sequences represented in the compressed
sparse row (CSR) format. Such non-uniform sequences contain
sub-sequences representing individual tiles or rows of the original
sequence and can be obtained using the nest sequence operator.
In the example, the row and indices arguments denote these sub-
sequences. S and I are defined as decltype(s_matrix[0]) and
decltype(s_indices[0]), respectively.

2.2 Schedules
For each computation expressed in Surge, a schedule and platform
may be optionally specified. Surge currently generates code for two
hardware platforms: GPUs and x86 CPUs through CUDA C++ and
OpenMP, respectively. Each platform has an associated set of data-
parallel kernels that implement various 〈operator, schedule〉 com-
binations on that platform. In our C++ implementation, platforms
are denoted as user-defined types.

Surge currently provides three primitive schedules: indepen-
dent (for operators with fully independent iterations such as
map), cooperative (for operators that require a coordination
phase among participating threads such as reduce and scan), and
sequential (for operators with an enforced ordering) that provide
a basis for composing more complex schedules. Similar to plat-
forms, schedules are represented as user-defined types in our cur-
rent implementation. Schedules may be nested to correspond with
operator nesting. We use the <> symbols to denote nesting. For
example, independent<cooperative> denotes a nested schedule
that evaluates the outer operator using the independent schedule
and the inner operator using the cooperative schedule.

As mentioned in Section 1, Surge features a schedule infer-
ence system that can automatically find high-quality schedules for
nested operators. Schedule inference proceeds along two phases:
(1) schedule construction, and (2) platform-aware schedule trans-
formation. In phase one, a machine-independent schedule is con-
structed based on the nesting structure of operators. In phase two,
this machine-independent schedule is transformed into a platform-

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

CSR	
 Scalar	
 CSR	
 Vector	
 ELL	
 COO	

FP
64
	
 G
FL
O
P/
s	

SpMV	
 Performance	

Surge	
 OpenMP	
 Surge	
 CUDA	
 (Default)	
 Surge	
 CUDA	
 (Tuned)	
 CUSP	

Figure 1: SpMV performance

specific schedule. For the SpMV example in Listing 1, the default
inferred schedule is independent<cooperative> in phase one and
independent_warps<cooperative_warp> in phase two. The latter
CUDA-specific schedule assigns a warp for the processing of each
matrix row in the computation. Since schedules are represented as
static types in our current implementation, C++ partial template
specialization is used to implement both these phases in the type
system.

3. Evaluation
We evaluate our benchmarks on a system with an Intel Core i7 3820
CPU (4-core, 8 logical threads with Hyper-Threading) with 8 GB
of RAM. The GPU used is an NVIDIA K20c (Kepler). We use the
NVIDIA CUDA compiler (NVCC) 6.5 (with the g++-4.8.2 host
compiler) with the -O3 flag.

Figure 1 shows performance results for our SpMV benchmark.
We evaluate the performance of four SpMV implementations gen-
erated by Surge from the same specification (Listing 1) on two dif-
ferent platforms: CPU (OpenMP) and GPU (CUDA). We compare
their performance with the corresponding GPU reference imple-
mentations from the CUSP library [1]. Here, the tuned bars rep-
resent performance achieved by manually finding optimal values
for the tunable parameters exposed by Surge, while the default
bars represent performance achieved by using the default values
for these parameters. By default, the CSR Vector variant is inferred
by Surge for the SpMV computation.

In addition to SpMV, we implemented three other benchmarks
in Surge and evaluated their performance. The benchmarks are: (1)
k-Means clustering, (2) support vector machine (SVM) training,
and (3) global prefix scan. Our benchmarks achieved speedups of
up to 3.79x on CPU (over corresponding reference sequential im-
plementations) and up to 1.32x on GPU (over corresponding hand-
crafted reference GPU implementations) on large input sizes. Fur-
ther, to provide a rough measure of productivity, we counted the
lines of code required in Surge to express the core computations of
our benchmarks and compared it with the number of lines taken to
express the same computation in our reference GPU implementa-
tions. We found that computations expressed in Surge require, on
average, 7.3x less lines of code than optimized CUDA versions.

References
[1] N. Bell and M. Garland. Implementing sparse matrix-vector multiplica-

tion on throughput-oriented processors. In SC ’09: Proc. Conference on
High Performance Computing Networking, Storage and Analysis, Nov.
2009.

[2] G. Blelloch. Nesl: A nested data-parallel language. Technical report,
Carnegie Mellon University, 1992.

[3] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an
embedded data parallel language. In Proceedings of the 16th ACM Sym-
posium on Principles and Practice of Parallel Programming, PPoPP
’11, pages 47–56. ACM, 2011.

264

